CF1591D Yet Another Sorting Problem
Description
Petya has an array of integers $ a_1, a_2, \ldots, a_n $ . He only likes sorted arrays. Unfortunately, the given array could be arbitrary, so Petya wants to sort it.
Petya likes to challenge himself, so he wants to sort array using only $ 3 $ -cycles. More formally, in one operation he can pick $ 3 $ pairwise distinct indices $ i $ , $ j $ , and $ k $ ( $ 1 \leq i, j, k \leq n $ ) and apply $ i \to j \to k \to i $ cycle to the array $ a $ . It simultaneously places $ a_i $ on position $ j $ , $ a_j $ on position $ k $ , and $ a_k $ on position $ i $ , without changing any other element.
For example, if $ a $ is $ [10, 50, 20, 30, 40, 60] $ and he chooses $ i = 2 $ , $ j = 1 $ , $ k = 5 $ , then the array becomes $ [\underline{50}, \underline{40}, 20, 30, \underline{10}, 60] $ .
Petya can apply arbitrary number of $ 3 $ -cycles (possibly, zero). You are to determine if Petya can sort his array $ a $ , i. e. make it non-decreasing.
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \leq t \leq 5 \cdot 10^5 $ ). Description of the test cases follows.
The first line of each test case contains a single integer $ n $ ( $ 1 \leq n \leq 5 \cdot 10^5 $ ) — the length of the array $ a $ .
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq n $ ).
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 5 \cdot 10^5 $ .
Output Format
For each test case, print "YES" (without quotes) if Petya can sort the array $ a $ using $ 3 $ -cycles, and "NO" (without quotes) otherwise. You can print each letter in any case (upper or lower).
Explanation/Hint
In the $ 6 $ -th test case Petya can use the $ 3 $ -cycle $ 1 \to 3 \to 2 \to 1 $ to sort the array.
In the $ 7 $ -th test case Petya can apply $ 1 \to 3 \to 2 \to 1 $ and make $ a = [1, 4, 2, 3] $ . Then he can apply $ 2 \to 4 \to 3 \to 2 $ and finally sort the array.