CF1592E Bored Bakry
Description
Bakry got bored of solving problems related to xor, so he asked you to solve this problem for him.
You are given an array $ a $ of $ n $ integers $ [a_1, a_2, \ldots, a_n] $ .
Let's call a subarray $ a_{l}, a_{l+1}, a_{l+2}, \ldots, a_r $ good if $ a_l \, \& \, a_{l+1} \, \& \, a_{l+2} \, \ldots \, \& \, a_r > a_l \oplus a_{l+1} \oplus a_{l+2} \ldots \oplus a_r $ , where $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) and $ \& $ denotes the [bitwise AND operation](https://en.wikipedia.org/wiki/Bitwise_operation#AND).
Find the length of the longest good subarray of $ a $ , or determine that no such subarray exists.
Input Format
The first line contains a single integer $ n $ ( $ 1 \le n \le 10^6 $ ) — the length of the array.
The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^6 $ ) — elements of the array.
Output Format
Print a single integer — the length of the longest good subarray. If there are no good subarrays, print $ 0 $ .
Explanation/Hint
In the first case, the answer is $ 2 $ , as the whole array is good: $ 5 \& 6 = 4 > 5 \oplus 6 = 3 $ .
In the third case, the answer is $ 4 $ , and one of the longest good subarrays is $ [a_2, a_3, a_4, a_5] $ : $ 1\& 3 \& 3 \&1 = 1 > 1\oplus 3 \oplus 3\oplus 1 = 0 $ .