CF1605E Array Equalizer

Description

Jeevan has two arrays $ a $ and $ b $ of size $ n $ . He is fond of performing weird operations on arrays. This time, he comes up with two types of operations: - Choose any $ i $ ( $ 1 \le i \le n $ ) and increment $ a_j $ by $ 1 $ for every $ j $ which is a multiple of $ i $ and $ 1 \le j \le n $ . - Choose any $ i $ ( $ 1 \le i \le n $ ) and decrement $ a_j $ by $ 1 $ for every $ j $ which is a multiple of $ i $ and $ 1 \le j \le n $ . He wants to convert array $ a $ into an array $ b $ using the minimum total number of operations. However, Jeevan seems to have forgotten the value of $ b_1 $ . So he makes some guesses. He will ask you $ q $ questions corresponding to his $ q $ guesses, the $ i $ -th of which is of the form: - If $ b_1 = x_i $ , what is the minimum number of operations required to convert $ a $ to $ b $ ? Help him by answering each question.

Input Format

The first line contains a single integer $ n $ $ (1 \le n \le 2 \cdot 10^{5}) $ — the size of arrays $ a $ and $ b $ . The second line contains $ n $ integers $ a_1, a_2, ..., a_n $ $ (1 \le a_i \le 10^6) $ . The third line contains $ n $ integers $ b_1, b_2, ..., b_n $ $ (1 \le b_i \le 10^6 $ for $ i \neq 1 $ ; $ b_1 = -1 $ , representing that the value of $ b_1 $ is unknown $ ) $ . The fourth line contains a single integer $ q $ $ (1 \le q \le 2 \cdot 10^{5}) $ — the number of questions. Each of the following $ q $ lines contains a single integer $ x_i $ $ (1 \le x_i \le 10^6) $ — representing the $ i $ -th question.

Output Format

Output $ q $ integers — the answers to each of his $ q $ questions.

Explanation/Hint

Consider the first test case. - $ b_1 = 1 $ : We need to convert $ [3, 7] \rightarrow [1, 5] $ . We can perform the following operations: $ [3, 7] $ $ \xrightarrow[\text{decrease}]{\text{i = 1}} $ $ [2, 6] $ $ \xrightarrow[\text{decrease}]{\text{i = 1}} $ $ [1, 5] $ Hence the answer is $ 2 $ . - $ b_1 = 4 $ : We need to convert $ [3, 7] \rightarrow [4, 5] $ . We can perform the following operations: $ [3, 7] $ $ \xrightarrow[\text{decrease}]{\text{i = 2}} $ $ [3, 6] $ $ \xrightarrow[\text{decrease}]{\text{i = 2}} $ $ [3, 5] $ $ \xrightarrow[\text{increase}]{\text{i = 1}} $ $ [4, 6] $ $ \xrightarrow[\text{decrease}]{\text{i = 2}} $ $ [4, 5] $ Hence the answer is $ 4 $ . - $ b_1 = 3 $ : We need to convert $ [3, 7] \rightarrow [3, 5] $ . We can perform the following operations: $ [3, 7] $ $ \xrightarrow[\text{decrease}]{\text{i = 2}} $ $ [3, 6] $ $ \xrightarrow[\text{decrease}]{\text{i = 2}} $ $ [3, 5] $ Hence the answer is $ 2 $ .