CF1617B GCD Problem
Description
Given a positive integer $ n $ . Find three distinct positive integers $ a $ , $ b $ , $ c $ such that $ a + b + c = n $ and $ \operatorname{gcd}(a, b) = c $ , where $ \operatorname{gcd}(x, y) $ denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers $ x $ and $ y $ .
Input Format
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^5 $ ) — the number of test cases. Description of the test cases follows.
The first and only line of each test case contains a single integer $ n $ ( $ 10 \le n \le 10^9 $ ).
Output Format
For each test case, output three distinct positive integers $ a $ , $ b $ , $ c $ satisfying the requirements. If there are multiple solutions, you can print any. We can show that an answer always exists.
Explanation/Hint
In the first test case, $ 6 + 9 + 3 = 18 $ and $ \operatorname{gcd}(6, 9) = 3 $ .
In the second test case, $ 21 + 39 + 3 = 63 $ and $ \operatorname{gcd}(21, 39) = 3 $ .
In the third test case, $ 29 + 43 + 1 = 73 $ and $ \operatorname{gcd}(29, 43) = 1 $ .