CF1637H Minimize Inversions Number

Description

You are given a permutation $ p $ of length $ n $ . You can choose any subsequence, remove it from the permutation, and insert it at the beginning of the permutation keeping the same order. For every $ k $ from $ 0 $ to $ n $ , find the minimal possible number of inversions in the permutation after you choose a subsequence of length exactly $ k $ .

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 50\,000 $ ) — the number of test cases. The first line of each test case contains one integer $ n $ ( $ 1 \le n \le 5 \cdot 10^5 $ ) — the length of the permutation. The second line of each test case contains the permutation $ p_1, p_2, \ldots, p_n $ ( $ 1 \le p_i \le n $ ). It is guaranteed that the total sum of $ n $ doesn't exceed $ 5 \cdot 10^5 $ .

Output Format

For each test case output $ n + 1 $ integers. The $ i $ -th of them must be the answer for the subsequence length of $ i - 1 $ .

Explanation/Hint

In the second test case: - For the length $ 0 $ : $ [4, 2, 1, 3] \rightarrow [4, 2, 1, 3] $ : $ 4 $ inversions. - For the length $ 1 $ : $ [4, 2, \mathbf{1}, 3] \rightarrow [1, 4, 2, 3] $ : $ 2 $ inversions. - For the length $ 2 $ : $ [4, \mathbf{2}, \mathbf{1}, 3] \rightarrow [2, 1, 4, 3] $ , or $ [4, 2, \mathbf{1}, \textbf{3}] \rightarrow [1, 3, 4, 2] $ : $ 2 $ inversions. - For the length $ 3 $ : $ [4, \mathbf{2}, \mathbf{1}, \mathbf{3}] \rightarrow [2, 1, 3, 4] $ : $ 1 $ inversion. - For the length $ 4 $ : $ [\mathbf{4}, \mathbf{2}, \mathbf{1}, \mathbf{3}] \rightarrow [4, 2, 1, 3] $ : $ 4 $ inversions.