CF1641D Two Arrays
Description
Sam changed his school and on the first biology lesson he got a very interesting task about genes.
You are given $ n $ arrays, the $ i $ -th of them contains $ m $ different integers — $ a_{i,1}, a_{i,2},\ldots,a_{i,m} $ . Also you are given an array of integers $ w $ of length $ n $ .
Find the minimum value of $ w_i + w_j $ among all pairs of integers $ (i, j) $ ( $ 1 \le i, j \le n $ ), such that the numbers $ a_{i,1}, a_{i,2},\ldots,a_{i,m}, a_{j,1}, a_{j,2},\ldots,a_{j,m} $ are distinct.
Input Format
The first line contains two integers $ n $ , $ m $ ( $ 2 \leq n \leq 10^5 $ , $ 1 \le m \le 5 $ ).
The $ i $ -th of the next $ n $ lines starts with $ m $ distinct integers $ a_{i,1}, a_{i,2}, \ldots, a_{i,m} $ and then $ w_i $ follows ( $ 1\leq a_{i,j} \leq 10^9 $ , $ 1 \leq w_{i} \leq 10^9 $ ).
Output Format
Print a single number — the answer to the problem.
If there are no suitable pairs $ (i, j) $ , print $ -1 $ .
Explanation/Hint
In the first test the minimum value is $ 5 = w_3 + w_4 $ , because numbers $ \{2, 3, 4, 5\} $ are distinct.
In the second test case, there are no suitable pair $ (i, j) $ .