CF1646E Power Board

Description

You have a rectangular board of size $ n\times m $ ( $ n $ rows, $ m $ columns). The $ n $ rows are numbered from $ 1 $ to $ n $ from top to bottom, and the $ m $ columns are numbered from $ 1 $ to $ m $ from left to right. The cell at the intersection of row $ i $ and column $ j $ contains the number $ i^j $ ( $ i $ raised to the power of $ j $ ). For example, if $ n=3 $ and $ m=3 $ the board is as follows: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1646E/f966495b3fd71da241cb3a79e264d10b59256e95.png)Find the number of distinct integers written on the board.

Input Format

The only line contains two integers $ n $ and $ m $ ( $ 1\le n,m\le 10^6 $ ) — the number of rows and columns of the board.

Output Format

Print one integer, the number of distinct integers on the board.

Explanation/Hint

The statement shows the board for the first test case. In this case there are $ 7 $ distinct integers: $ 1 $ , $ 2 $ , $ 3 $ , $ 4 $ , $ 8 $ , $ 9 $ , and $ 27 $ . In the second test case, the board is as follows: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1646E/36fd681eff28bb5ca921155ad4010ac8be1c65a1.png)There are $ 5 $ distinct numbers: $ 1 $ , $ 2 $ , $ 4 $ , $ 8 $ and $ 16 $ . In the third test case, the board is as follows: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1646E/a5987da66d8c80ffc8e49f428e2b3197bf00bc43.png)There are $ 6 $ distinct numbers: $ 1 $ , $ 2 $ , $ 3 $ , $ 4 $ , $ 9 $ and $ 16 $ .