CF1657B XY Sequence
Description
You are given four integers $ n $ , $ B $ , $ x $ and $ y $ . You should build a sequence $ a_0, a_1, a_2, \dots, a_n $ where $ a_0 = 0 $ and for each $ i \ge 1 $ you can choose:
- either $ a_i = a_{i - 1} + x $
- or $ a_i = a_{i - 1} - y $ .
Your goal is to build such a sequence $ a $ that $ a_i \le B $ for all $ i $ and $ \sum\limits_{i=0}^{n}{a_i} $ is maximum possible.
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Next $ t $ cases follow.
The first and only line of each test case contains four integers $ n $ , $ B $ , $ x $ and $ y $ ( $ 1 \le n \le 2 \cdot 10^5 $ ; $ 1 \le B, x, y \le 10^9 $ ).
It's guaranteed that the total sum of $ n $ doesn't exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, print one integer — the maximum possible $ \sum\limits_{i=0}^{n}{a_i} $ .
Explanation/Hint
In the first test case, the optimal sequence $ a $ is $ [0, 1, 2, 3, 4, 5] $ .
In the second test case, the optimal sequence $ a $ is $ [0, 10^9, 0, 10^9, 0, 10^9, 0, 10^9] $ .
In the third test case, the optimal sequence $ a $ is $ [0, -3, -6, 1, -2] $ .