CF1659C Line Empire

Description

You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers. Consider a number axis. The capital of your empire is initially at $ 0 $ . There are $ n $ unconquered kingdoms at positions $ 0

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases. The description of each test case follows. The first line of each test case contains $ 3 $ integers $ n $ , $ a $ , and $ b $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ; $ 1 \leq a,b \leq 10^5 $ ). The second line of each test case contains $ n $ integers $ x_1, x_2, \ldots, x_n $ ( $ 1 \leq x_1 < x_2 < \ldots < x_n \leq 10^8 $ ). The sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output a single integer — the minimum cost to conquer all kingdoms.

Explanation/Hint

Here is an optimal sequence of moves for the second test case: 1. Conquer the kingdom at position $ 1 $ with cost $ 3\cdot(1-0)=3 $ . 2. Move the capital to the kingdom at position $ 1 $ with cost $ 6\cdot(1-0)=6 $ . 3. Conquer the kingdom at position $ 5 $ with cost $ 3\cdot(5-1)=12 $ . 4. Move the capital to the kingdom at position $ 5 $ with cost $ 6\cdot(5-1)=24 $ . 5. Conquer the kingdom at position $ 6 $ with cost $ 3\cdot(6-5)=3 $ . 6. Conquer the kingdom at position $ 21 $ with cost $ 3\cdot(21-5)=48 $ . 7. Conquer the kingdom at position $ 30 $ with cost $ 3\cdot(30-5)=75 $ . The total cost is $ 3+6+12+24+3+48+75=171 $ . You cannot get a lower cost than this.