CF1671D Insert a Progression

Description

You are given a sequence of $ n $ integers $ a_1, a_2, \dots, a_n $ . You are also given $ x $ integers $ 1, 2, \dots, x $ . You are asked to insert each of the extra integers into the sequence $ a $ . Each integer can be inserted at the beginning of the sequence, at the end of the sequence, or between any elements of the sequence. The score of the resulting sequence $ a' $ is the sum of absolute differences of adjacent elements in it $ \left(\sum \limits_{i=1}^{n+x-1} |a'_i - a'_{i+1}|\right) $ . What is the smallest possible score of the resulting sequence $ a' $ ?

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of testcases. The first line of each testcase contains two integers $ n $ and $ x $ ( $ 1 \le n, x \le 2 \cdot 10^5 $ ) — the length of the sequence and the number of extra integers. The second line of each testcase contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 2 \cdot 10^5 $ ). The sum of $ n $ over all testcases doesn't exceed $ 2 \cdot 10^5 $ .

Output Format

For each testcase, print a single integer — the smallest sum of absolute differences of adjacent elements of the sequence after you insert the extra integers into it.

Explanation/Hint

Here are the sequences with the smallest scores for the example. The underlined elements are the extra integers. Note that there exist other sequences with this smallest score. - $ \underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{5}, 10 $ - $ \underline{7}, 7, \underline{6}, \underline{4}, 2, \underline{2}, \underline{1}, \underline{3}, \underline{5}, \underline{8}, 10 $ - $ 6, \underline{1}, 1, \underline{2}, 5, 7, 3, 3, 9, 10, 10, 1 $ - $ 1, 3, \underline{1}, 1, 2, \underline{2}, \underline{3}, \underline{4}, \underline{5}, \underline{6}, \underline{7}, \underline{8}, \underline{9}, \underline{10} $