CF1672C Unequal Array
Description
You are given an array $ a $ of length $ n $ . We define the equality of the array as the number of indices $ 1 \le i \le n - 1 $ such that $ a_i = a_{i + 1} $ . We are allowed to do the following operation:
- Select two integers $ i $ and $ x $ such that $ 1 \le i \le n - 1 $ and $ 1 \le x \le 10^9 $ . Then, set $ a_i $ and $ a_{i + 1} $ to be equal to $ x $ .
Find the minimum number of operations needed such that the equality of the array is less than or equal to $ 1 $ .
Input Format
Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. The description of the test cases follows.
The first line of each test case contains an integer $ n $ ( $ 2 \le n \le 2 \cdot 10 ^ 5 $ ) — the length of array $ a $ .
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — elements of the array.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10 ^ 5 $
Output Format
For each test case, print the minimum number of operations needed.
Explanation/Hint
In the first test case, we can select $ i=2 $ and $ x=2 $ to form $ [1, 2, 2, 1, 1] $ . Then, we can select $ i=3 $ and $ x=3 $ to form $ [1, 2, 3, 3, 1] $ .
In the second test case, we can select $ i=3 $ and $ x=100 $ to form $ [2, 1, 100, 100, 2] $ .