CF1684B Z mod X = C
Description
You are given three positive integers $ a $ , $ b $ , $ c $ ( $ a < b < c $ ). You have to find three positive integers $ x $ , $ y $ , $ z $ such that:
$ $$$x \bmod y = a, $ $ $ $ y \bmod z = b, $ $ $ $ z \bmod x = c. $ $
Here $ p \\bmod q $ denotes the remainder from dividing $ p $ by $ q$$$. It is possible to show that for such constraints the answer always exists.
Input Format
The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10\,000 $ ) — the number of test cases. Description of the test cases follows.
Each test case contains a single line with three integers $ a $ , $ b $ , $ c $ ( $ 1 \le a < b < c \le 10^8 $ ).
Output Format
For each test case output three positive integers $ x $ , $ y $ , $ z $ ( $ 1 \le x, y, z \le 10^{18} $ ) such that $ x \bmod y = a $ , $ y \bmod z = b $ , $ z \bmod x = c $ .
You can output any correct answer.
Explanation/Hint
In the first test case:
$ $$$x \bmod y = 12 \bmod 11 = 1; $ $
$ $ y \bmod z = 11 \bmod 4 = 3; $ $
$ $ z \bmod x = 4 \bmod 12 = 4. $ $$$