CF1684E MEX vs DIFF

Description

You are given an array $ a $ of $ n $ non-negative integers. In one operation you can change any number in the array to any other non-negative integer. Let's define the cost of the array as $ \operatorname{DIFF}(a) - \operatorname{MEX}(a) $ , where $ \operatorname{MEX} $ of a set of non-negative integers is the smallest non-negative integer not present in the set, and $ \operatorname{DIFF} $ is the number of different numbers in the array. For example, $ \operatorname{MEX}(\{1, 2, 3\}) = 0 $ , $ \operatorname{MEX}(\{0, 1, 2, 4, 5\}) = 3 $ . You should find the minimal cost of the array $ a $ if you are allowed to make at most $ k $ operations.

Input Format

The input consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Description of the test cases follows. The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \le n \le 10^5 $ , $ 0 \le k \le 10^5 $ ) — the length of the array $ a $ and the number of operations that you are allowed to make. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 0 \le a_i \le 10^9 $ ) — the elements of the array $ a $ . It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .

Output Format

For each test case output a single integer — minimal cost that it is possible to get making at most $ k $ operations.

Explanation/Hint

In the first test case no operations are needed to minimize the value of $ \operatorname{DIFF} - \operatorname{MEX} $ . In the second test case it is possible to replace $ 5 $ by $ 1 $ . After that the array $ a $ is $ [0,\, 2,\, 4,\, 1] $ , $ \operatorname{DIFF} = 4 $ , $ \operatorname{MEX} = \operatorname{MEX}(\{0, 1, 2, 4\}) = 3 $ , so the answer is $ 1 $ . In the third test case one possible array $ a $ is $ [4,\, 13,\, 0,\, 0,\, 13,\, 1,\, 2] $ , $ \operatorname{DIFF} = 5 $ , $ \operatorname{MEX} = 3 $ . In the fourth test case one possible array $ a $ is $ [1,\, 2,\, 3,\, 0,\, 0,\, 0] $ .