CF1703F Yet Another Problem About Pairs Satisfying an Inequality

题目描述

# Yet Another Problem About Pairs Satisfying an Inequality 给你一个序列$ a_1, a_2, \dots a_n $ 。请计算出满足下面条件的 $(i,j) (1 \leq i, j \leq n) $个数 。 - $ a_i < i < a_j < j $ .

输入格式

第一行包含一个整数 $ t $ ( $ 1 \leq t \leq 1000 $ ) — 测试数据的个数 每一个测试数据的第一行包含一个整数 $ n $ ( $ 2 \leq n \leq 2 \cdot 10^5 $ ) — 序列的长度 每一个测试数据的第二行包含$ n $ 个整数 $ a_1, a_2, \dots, a_n $ ( $ 0 \leq a_i \leq 10^9 $ ) — 序列里的元素 保证每一个测试数据的$ n $ 的总和不超过 $ 2 \cdot 10^5 $ .

输出格式

对于每一个测试数据,输出一个整数——满足题目条件的$(i,j)$个数 请注意,对于某些测试数据,他的答案可能会超过32位的整数,所以你应该使用64位的整数在你的编程语言里,比如说C++中的long long ## 样例 #1 ### 样例输入 #1 ``` 5 8 1 1 2 3 8 2 1 4 2 1 2 10 0 2 1 6 3 4 1 2 8 3 2 1 1000000000 3 0 1000000000 2 ``` ### 样例输出 #1 ``` 3 0 10 0 1 ```

说明/提示

对于第一组测试数据,满足条件的 $ (i, j) $ = $ \{(2, 4), (2, 8), (3, 8)\} $ . - $ (2, 4) $ 满足条件是因为 $ a_2 = 1 $ , $ a_4 = 3 $ 且$ 1 < 2 < 3 < 4 $ . - $ (2, 8) $ 满足条件是因为$ a_2 = 1 $ , $ a_8 = 4 $ 且 $ 1 < 2 < 4 < 8 $ . - $ (3, 8) $ 满足条件是因为$ a_3 = 2 $ , $ a_8 = 4 $ 且 $ 2 < 3 < 4 < 8 $ .