CF1703F Yet Another Problem About Pairs Satisfying an Inequality

Description

You are given an array $ a_1, a_2, \dots a_n $ . Count the number of pairs of indices $ 1 \leq i, j \leq n $ such that $ a_i < i < a_j < j $ .

Input Format

The first line contains an integer $ t $ ( $ 1 \leq t \leq 1000 $ ) — the number of test cases. The first line of each test case contains an integer $ n $ ( $ 2 \leq n \leq 2 \cdot 10^5 $ ) — the length of the array. The second line of each test case contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \leq a_i \leq 10^9 $ ) — the elements of the array. It is guaranteed that the sum of $ n $ across all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, output a single integer — the number of pairs of indices satisfying the condition in the statement. Please note, that the answer for some test cases won't fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).

Explanation/Hint

For the first test cases the pairs are $ (i, j) $ = $ \{(2, 4), (2, 8), (3, 8)\} $ . - The pair $ (2, 4) $ is true because $ a_2 = 1 $ , $ a_4 = 3 $ and $ 1 < 2 < 3 < 4 $ . - The pair $ (2, 8) $ is true because $ a_2 = 1 $ , $ a_8 = 4 $ and $ 1 < 2 < 4 < 8 $ . - The pair $ (3, 8) $ is true because $ a_3 = 2 $ , $ a_8 = 4 $ and $ 2 < 3 < 4 < 8 $ .