CF1709F Multiset of Strings
Description
You are given three integers $ n $ , $ k $ and $ f $ .
Consider all binary strings (i. e. all strings consisting of characters $ 0 $ and/or $ 1 $ ) of length from $ 1 $ to $ n $ . For every such string $ s $ , you need to choose an integer $ c_s $ from $ 0 $ to $ k $ .
A multiset of binary strings of length exactly $ n $ is considered beautiful if for every binary string $ s $ with length from $ 1 $ to $ n $ , the number of strings in the multiset such that $ s $ is their prefix is not exceeding $ c_s $ .
For example, let $ n = 2 $ , $ c_{0} = 3 $ , $ c_{00} = 1 $ , $ c_{01} = 2 $ , $ c_{1} = 1 $ , $ c_{10} = 2 $ , and $ c_{11} = 3 $ . The multiset of strings $ \{11, 01, 00, 01\} $ is beautiful, since:
- for the string $ 0 $ , there are $ 3 $ strings in the multiset such that $ 0 $ is their prefix, and $ 3 \le c_0 $ ;
- for the string $ 00 $ , there is one string in the multiset such that $ 00 $ is its prefix, and $ 1 \le c_{00} $ ;
- for the string $ 01 $ , there are $ 2 $ strings in the multiset such that $ 01 $ is their prefix, and $ 2 \le c_{01} $ ;
- for the string $ 1 $ , there is one string in the multiset such that $ 1 $ is its prefix, and $ 1 \le c_1 $ ;
- for the string $ 10 $ , there are $ 0 $ strings in the multiset such that $ 10 $ is their prefix, and $ 0 \le c_{10} $ ;
- for the string $ 11 $ , there is one string in the multiset such that $ 11 $ is its prefix, and $ 1 \le c_{11} $ .
Now, for the problem itself. You have to calculate the number of ways to choose the integer $ c_s $ for every binary string $ s $ of length from $ 1 $ to $ n $ in such a way that the maximum possible size of a beautiful multiset is exactly $ f $ .
Input Format
The only line of input contains three integers $ n $ , $ k $ and $ f $ ( $ 1 \le n \le 15 $ ; $ 1 \le k, f \le 2 \cdot 10^5 $ ).
Output Format
Print one integer — the number of ways to choose the integer $ c_s $ for every binary string $ s $ of length from $ 1 $ to $ n $ in such a way that the maximum possible size of a beautiful multiset is exactly $ f $ . Since it can be huge, print it modulo $ 998244353 $ .
Explanation/Hint
In the first example, the three ways to choose the integers $ c_s $ are:
- $ c_0 = 0 $ , $ c_1 = 2 $ , then the maximum beautiful multiset is $ \{1, 1\} $ ;
- $ c_0 = 1 $ , $ c_1 = 1 $ , then the maximum beautiful multiset is $ \{0, 1\} $ ;
- $ c_0 = 2 $ , $ c_1 = 0 $ , then the maximum beautiful multiset is $ \{0, 0\} $ .