CF1712E2 LCM Sum (hard version)
Description
We are sum for we are many
Some Number
This version of the problem differs from the previous one only in the constraint on $ t $ . You can make hacks only if both versions of the problem are solved.
You are given two positive integers $ l $ and $ r $ .
Count the number of distinct triplets of integers $ (i, j, k) $ such that $ l \le i < j < k \le r $ and $ \operatorname{lcm}(i,j,k) \ge i + j + k $ .
Here $ \operatorname{lcm}(i, j, k) $ denotes the [least common multiple (LCM)](https://en.wikipedia.org/wiki/Least_common_multiple) of integers $ i $ , $ j $ , and $ k $ .
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ \bf{1 \le t \le 10^5} $ ). Description of the test cases follows.
The only line for each test case contains two integers $ l $ and $ r $ ( $ 1 \le l \le r \le 2 \cdot 10^5 $ , $ l + 2 \le r $ ).
Output Format
For each test case print one integer — the number of suitable triplets.
Explanation/Hint
In the first test case, there are $ 3 $ suitable triplets:
- $ (1,2,3) $ ,
- $ (1,3,4) $ ,
- $ (2,3,4) $ .
In the second test case, there is $ 1 $ suitable triplet:
- $ (3,4,5) $ .