CF1713C Build Permutation
Description
A $ \mathbf{0} $ -indexed array $ a $ of size $ n $ is called good if for all valid indices $ i $ ( $ 0 \le i \le n-1 $ ), $ a_i + i $ is a perfect square $ ^\dagger $ .
Given an integer $ n $ . Find a permutation $ ^\ddagger $ $ p $ of $ [0,1,2,\ldots,n-1] $ that is good or determine that no such permutation exists.
$ ^\dagger $ An integer $ x $ is said to be a perfect square if there exists an integer $ y $ such that $ x = y^2 $ .
$ ^\ddagger $ An array $ b $ is a permutation of an array $ a $ if $ b $ consists of the elements of $ a $ in arbitrary order. For example, $ [4,2,3,4] $ is a permutation of $ [3,2,4,4] $ while $ [1,2,2] $ is not a permutation of $ [1,2,3] $ .
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
The only line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of the permutation $ p $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .
Output Format
For each test case, output $ n $ distinct integers $ p_0, p_1, \dots, p_{n-1} $ ( $ 0 \le p_i \le n-1 $ ) — the permutation $ p $ — if the answer exists, and $ -1 $ otherwise.
Explanation/Hint
In the first test case, we have $ n=3 $ . The array $ p = [1, 0, 2] $ is good since $ 1 + 0 = 1^2 $ , $ 0 + 1 = 1^2 $ , and $ 2 + 2 = 2^2 $
In the second test case, we have $ n=4 $ . The array $ p = [0, 3, 2, 1] $ is good since $ 0 + 0 = 0^2 $ , $ 3 + 1 = 2^2 $ , $ 2+2 = 2^2 $ , and $ 1+3 = 2^2 $ .