CF1716B Permutation Chain

Description

A permutation of length $ n $ is a sequence of integers from $ 1 $ to $ n $ such that each integer appears in it exactly once. Let the fixedness of a permutation $ p $ be the number of fixed points in it — the number of positions $ j $ such that $ p_j = j $ , where $ p_j $ is the $ j $ -th element of the permutation $ p $ . You are asked to build a sequence of permutations $ a_1, a_2, \dots $ , starting from the identity permutation (permutation $ a_1 = [1, 2, \dots, n] $ ). Let's call it a permutation chain. Thus, $ a_i $ is the $ i $ -th permutation of length $ n $ . For every $ i $ from $ 2 $ onwards, the permutation $ a_i $ should be obtained from the permutation $ a_{i-1} $ by swapping any two elements in it (not necessarily neighboring). The fixedness of the permutation $ a_i $ should be strictly lower than the fixedness of the permutation $ a_{i-1} $ . Consider some chains for $ n = 3 $ : - $ a_1 = [1, 2, 3] $ , $ a_2 = [1, 3, 2] $ — that is a valid chain of length $ 2 $ . From $ a_1 $ to $ a_2 $ , the elements on positions $ 2 $ and $ 3 $ get swapped, the fixedness decrease from $ 3 $ to $ 1 $ . - $ a_1 = [2, 1, 3] $ , $ a_2 = [3, 1, 2] $ — that is not a valid chain. The first permutation should always be $ [1, 2, 3] $ for $ n = 3 $ . - $ a_1 = [1, 2, 3] $ , $ a_2 = [1, 3, 2] $ , $ a_3 = [1, 2, 3] $ — that is not a valid chain. From $ a_2 $ to $ a_3 $ , the elements on positions $ 2 $ and $ 3 $ get swapped but the fixedness increase from $ 1 $ to $ 3 $ . - $ a_1 = [1, 2, 3] $ , $ a_2 = [3, 2, 1] $ , $ a_3 = [3, 1, 2] $ — that is a valid chain of length $ 3 $ . From $ a_1 $ to $ a_2 $ , the elements on positions $ 1 $ and $ 3 $ get swapped, the fixedness decrease from $ 3 $ to $ 1 $ . From $ a_2 $ to $ a_3 $ , the elements on positions $ 2 $ and $ 3 $ get swapped, the fixedness decrease from $ 1 $ to $ 0 $ . Find the longest permutation chain. If there are multiple longest answers, print any of them.

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 99 $ ) — the number of testcases. The only line of each testcase contains a single integer $ n $ ( $ 2 \le n \le 100 $ ) — the required length of permutations in the chain.

Output Format

For each testcase, first, print the length of a permutation chain $ k $ . Then print $ k $ permutations $ a_1, a_2, \dots, a_k $ . $ a_1 $ should be an identity permutation of length $ n $ ( $ [1, 2, \dots, n] $ ). For each $ i $ from $ 2 $ to $ k $ , $ a_i $ should be obtained by swapping two elements in $ a_{i-1} $ . It should also have a strictly lower fixedness than $ a_{i-1} $ .