CF1722G Even-Odd XOR

Description

Given an integer $ n $ , find any array $ a $ of $ n $ distinct nonnegative integers less than $ 2^{31} $ such that the [bitwise XOR](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) of the elements on odd indices equals the bitwise XOR of the elements on even indices.

Input Format

The first line of the input contains an integer $ t $ ( $ 1 \leq t \leq 629 $ ) — the number of test cases. Then $ t $ lines follow, each containing a single integer $ n $ $ (3 \leq n \leq 2\cdot10^5) $ — the length of the array. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2\cdot 10^5 $ .

Output Format

For each test case, output one line containing $ n $ distinct integers that satisfy the conditions. If there are multiple answers, you can output any of them.

Explanation/Hint

In the first test case the XOR on odd indices is $ 4 \oplus 1 \oplus 0 \oplus 7 = 2 $ and the XOR on even indices is $ 2 \oplus 5 \oplus 6 \oplus 3= 2 $ .