CF1728B Best Permutation

Description

Let's define the value of the permutation $ p $ of $ n $ integers $ 1 $ , $ 2 $ , ..., $ n $ (a permutation is an array where each element from $ 1 $ to $ n $ occurs exactly once) as follows: - initially, an integer variable $ x $ is equal to $ 0 $ ; - if $ x < p_1 $ , then add $ p_1 $ to $ x $ (set $ x = x + p_1 $ ), otherwise assign $ 0 $ to $ x $ ; - if $ x < p_2 $ , then add $ p_2 $ to $ x $ (set $ x = x + p_2 $ ), otherwise assign $ 0 $ to $ x $ ; - ... - if $ x < p_n $ , then add $ p_n $ to $ x $ (set $ x = x + p_n $ ), otherwise assign $ 0 $ to $ x $ ; - the value of the permutation is $ x $ at the end of this process. For example, for $ p = [4, 5, 1, 2, 3, 6] $ , the value of $ x $ changes as follows: $ 0, 4, 9, 0, 2, 5, 11 $ , so the value of the permutation is $ 11 $ . You are given an integer $ n $ . Find a permutation $ p $ of size $ n $ with the maximum possible value among all permutations of size $ n $ . If there are several such permutations, you can print any of them.

Input Format

The first line contains one integer $ t $ ( $ 1 \le t \le 97 $ ) — the number of test cases. The only line of each test case contains one integer $ n $ ( $ 4 \le n \le 100 $ ).

Output Format

For each test case, print $ n $ integers — the permutation $ p $ of size $ n $ with the maximum possible value among all permutations of size $ n $ .