CF1732E Location
Description
You are given two arrays of integers $ a_1, a_2, \ldots, a_n $ and $ b_1, b_2, \ldots, b_n $ . You need to handle $ q $ queries of the following two types:
- $ 1 $ $ l $ $ r $ $ x $ : assign $ a_i := x $ for all $ l \leq i \leq r $ ;
- $ 2 $ $ l $ $ r $ : find the minimum value of the following expression among all $ l \leq i \leq r $ : $ $$$\frac{\operatorname{lcm}(a_i, b_i)}{\gcd(a_i, b_i)}. $ $
In this problem $ \\gcd(x, y) $ denotes the greatest common divisor of $ x $ and $ y $ , and $ \\operatorname{lcm}(x, y) $ denotes the least common multiple of $ x $ and $ y$$$.
Input Format
The first line contains two integers $ n $ and $ q $ ( $ 1 \leq n, q \leq 5 \cdot 10^4 $ ) — the number of numbers in the arrays $ a $ and $ b $ and the number of queries.
The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 5 \cdot 10^4 $ ) — the elements of the array $ a $ .
The third line contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \leq b_i \leq 5 \cdot 10^4 $ ) — the elements of the array $ b $ .
Then $ q $ lines follow, $ j $ -th of which starts with an integer $ t_j $ ( $ 1 \leq t_j \leq 2 $ ) and means that the $ j $ -th query has type $ t_j $ .
If $ t_j = 1 $ , it is followed by three integers $ l_j $ , $ r_j $ , and $ x_j $ ( $ 1 \leq l_j \leq r_j \leq n $ , $ 1 \leq x_j \leq 5 \cdot 10^4 $ ).
If $ t_j = 2 $ , it is followed by two integers $ l_j $ and $ r_j $ ( $ 1 \leq l_j \leq r_j \leq n $ ).
It is guaranteed that there is at least one query of type $ 2 $ .
Output Format
For each query of the second type, output the minimum value of the expression.
Explanation/Hint
In the first example:
- For the first query we can choose $ i = 4 $ . So the value is $ \frac{\operatorname{lcm}(4, 4)}{\gcd(4, 4)} = \frac{4}{4} = 1 $ .
- After the second query the array $ a = [6, 10, 15, 4, 9, 25, 9, 9, 9, 9] $ .
- For the third query we can choose $ i = 9 $ . So the value is $ \frac{\operatorname{lcm}(9, 18)}{\gcd(9, 18)} = \frac{18}{9} = 2 $ .
In the second:
- For the first query we can choose $ i = 4 $ . So the value is $ \frac{\operatorname{lcm}(1, 5)}{\gcd(1, 5)} = \frac{5}{1} = 5 $ .
- After the second query the array $ a = [10, 18, 18, 5] $ .
- After the third query the array $ a = [10, 10, 18, 5] $ .
- For the fourth query we can choose $ i = 2 $ . So the value is $ \frac{\operatorname{lcm}(10, 12)}{\gcd(10, 12)} = \frac{60}{2} = 30 $ .