CF1744B Even-Odd Increments
Description
You are given $ n $ of integers $ a_1, a_2, \ldots, a_n $ . Process $ q $ queries of two types:
- query of the form "0 $ x_j $ ": add the value $ x_j $ to all even elements of the array $ a $ ,
- query of the form "1 $ x_j $ ": add the value $ x_j $ to all odd elements of the array $ a $ .
Note that when processing the query, we look specifically at the odd/even value of $ a_i $ , not its index.
After processing each query, print the sum of the elements of the array $ a $ .
Please note that the answer for some test cases won't fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).
Input Format
The first line of the input contains an integer $ t $ $ (1 \leq t \leq 10^4 $ ) — the number of test cases.
The descriptions of the test cases follow.
The first line of each test case contains two integers $ n $ and $ q $ ( $ 1 \leq n $ , $ q \leq 10^5 $ ) — the length of array $ a $ and the number of queries.
The second line of each test case contains exactly $ n $ integers: $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 10^9 $ ) — elements of the array $ a $ .
The following $ q $ lines contain queries as two integers $ type_j $ and $ x_j $ $ (0 \leq type_j \leq 1 $ , $ 1 \leq x_j \leq 10^4 $ ).
It is guaranteed that the sum of values $ n $ over all test cases in a test does not exceed $ 10^5 $ . Similarly, the sum of values $ q $ over all test cases does not exceed $ 10^5 $ .
Output Format
For each test case, print $ q $ numbers: the sum of the elements of the array $ a $ after processing a query.
Explanation/Hint
In the first test case, the array $ a = [2] $ after the first query.
In the third test case, the array $ a $ is modified as follows: $ [1, 3, 2, 4, 10, 48] $ $ \rightarrow $ $ [7, 9, 2, 4, 10, 48] $ $ \rightarrow $ $ [7, 9, 7, 9, 15, 53] $ $ \rightarrow $ $ [7, 9, 7, 9, 15, 53] $ $ \rightarrow $ $ [10, 12, 10, 12, 18, 56] $ $ \rightarrow $ $ [22, 24, 22, 24, 30, 68] $ $ \rightarrow $ $ [23, 25, 23, 25, 31, 69] $ .