CF1744E1 Divisible Numbers (easy version)
Description
This is an easy version of the problem. The only difference between an easy and a hard version is the constraints on $ a $ , $ b $ , $ c $ and $ d $ .
You are given $ 4 $ positive integers $ a $ , $ b $ , $ c $ , $ d $ with $ a < c $ and $ b < d $ . Find any pair of numbers $ x $ and $ y $ that satisfies the following conditions:
- $ a < x \leq c $ , $ b < y \leq d $ ,
- $ x \cdot y $ is divisible by $ a \cdot b $ .
Note that required $ x $ and $ y $ may not exist.
Input Format
The first line of the input contains a single integer $ t $ $ (1 \leq t \leq 10 $ ), the number of test cases.
The descriptions of the test cases follow.
The only line of each test case contains four integers $ a $ , $ b $ , $ c $ and $ d $ ( $ 1 \leq a < c \leq 10^5 $ , $ 1 \leq b < d \leq 10^5 $ ).
Output Format
For each test case print a pair of numbers $ a < x \leq c $ and $ b < y \leq d $ such that $ x \cdot y $ is divisible by $ a \cdot b $ . If there are multiple answers, print any of them. If there is no such pair of numbers, then print -1 -1.