CF1744E1 Divisible Numbers (easy version)

Description

This is an easy version of the problem. The only difference between an easy and a hard version is the constraints on $ a $ , $ b $ , $ c $ and $ d $ . You are given $ 4 $ positive integers $ a $ , $ b $ , $ c $ , $ d $ with $ a < c $ and $ b < d $ . Find any pair of numbers $ x $ and $ y $ that satisfies the following conditions: - $ a < x \leq c $ , $ b < y \leq d $ , - $ x \cdot y $ is divisible by $ a \cdot b $ . Note that required $ x $ and $ y $ may not exist.

Input Format

The first line of the input contains a single integer $ t $ $ (1 \leq t \leq 10 $ ), the number of test cases. The descriptions of the test cases follow. The only line of each test case contains four integers $ a $ , $ b $ , $ c $ and $ d $ ( $ 1 \leq a < c \leq 10^5 $ , $ 1 \leq b < d \leq 10^5 $ ).

Output Format

For each test case print a pair of numbers $ a < x \leq c $ and $ b < y \leq d $ such that $ x \cdot y $ is divisible by $ a \cdot b $ . If there are multiple answers, print any of them. If there is no such pair of numbers, then print -1 -1.