CF1744F MEX vs MED
Description
You are given a permutation $ p_1, p_2, \ldots, p_n $ of length $ n $ of numbers $ 0, \ldots, n - 1 $ . Count the number of subsegments $ 1 \leq l \leq r \leq n $ of this permutation such that $ mex(p_l, p_{l+1}, \ldots, p_r) > med(p_l, p_{l+1}, \ldots, p_r) $ .
$ mex $ of $ S $ is the smallest non-negative integer that does not occur in $ S $ . For example:
- $ mex({0, 1, 2, 3}) = 4 $
- $ mex({0, 4, 1, 3}) = 2 $
- $ mex({5, 4, 0, 1, 2}) = 3 $
$ med $ of the set $ S $ is the median of the set, i.e. the element that, after sorting the elements in non-decreasing order, will be at position number $ \left \lfloor{ \frac{|S| + 1}{2} } \right \rfloor $ (array elements are numbered starting from $ 1 $ and here $ \left \lfloor{v} \right \rfloor $ denotes rounding $ v $ down.). For example:
- $ med({0, 1, 2, 3}) = 1 $
- $ med({0, 4, 1, 3}) = 1 $
- $ med({5, 4, 0, 1, 2}) = 2 $
A sequence of $ n $ numbers is called a permutation if it contains all the numbers from $ 0 $ to $ n - 1 $ exactly once.
Input Format
The first line of the input contains a single integer $ t $ $ (1 \leq t \leq 10^4 $ ), the number of test cases.
The descriptions of the test cases follow.
The first line of each test case contains a single integer $ n $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ), the length of the permutation $ p $ .
The second line of each test case contains exactly $ n $ integers: $ p_1, p_2, \ldots, p_n $ ( $ 0 \leq p_i \leq n - 1 $ ), elements of permutation $ p $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case print the answer in a single line: the number of subsegments $ 1 \leq l \leq r \leq n $ of this permutation such that $ mex(p_l, p_{l+1}, \ldots, p_r) > med(p_l, p_{l+1}, \ldots, p_r) $ .
Explanation/Hint
The first test case contains exactly one subsegment and $ mex({0}) = 1 > med({0}) = 0 $ on it.
In the third test case, on the following subsegments: $ [1, 0] $ , $ [0] $ , $ [1, 0, 2] $ and $ [0, 2] $ , $ mex $ is greater than $ med $ .
In the fourth test case, on the following subsegments: $ [0, 2] $ , $ [0] $ , $ [0, 2, 1] $ and $ [0, 2, 1, 3] $ , $ mex $ greater than $ med $ .