CF1750D Count GCD

Description

You are given two integers $ n $ and $ m $ and an array $ a $ of $ n $ integers. For each $ 1 \le i \le n $ it holds that $ 1 \le a_i \le m $ . Your task is to count the number of different arrays $ b $ of length $ n $ such that: - $ 1 \le b_i \le m $ for each $ 1 \le i \le n $ , and - $ \gcd(b_1,b_2,b_3,...,b_i) = a_i $ for each $ 1 \le i \le n $ . Here $ \gcd(a_1,a_2,\dots,a_i) $ denotes the [greatest common divisor (GCD)](https://en.wikipedia.org/wiki/Greatest_common_divisor) of integers $ a_1,a_2,\ldots,a_i $ . Since this number can be too large, print it modulo $ 998\,244\,353 $ .

Input Format

Each test consist of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. The description of test cases follows. The first line of each test case contains two integers $ n $ and $ m $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le m \le 10^9 $ ) — the length of the array $ a $ and the maximum possible value of the element. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le m $ ) — the elements of the array $ a $ . It is guaranteed that the sum of $ n $ across all test cases doesn't exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, print a single integer — the number of different arrays satisfying the conditions above. Since this number can be large, print it modulo $ 998\,244\,353 $ .

Explanation/Hint

In the first test case, the possible arrays $ b $ are: - $ [4,2,1] $ ; - $ [4,2,3] $ ; - $ [4,2,5] $ . In the second test case, the only array satisfying the demands is $ [1,1] $ . In the third test case, it can be proven no such array exists.