CF1758B XOR = Average

Description

You are given an integer $ n $ . Find a sequence of $ n $ integers $ a_1, a_2, \dots, a_n $ such that $ 1 \leq a_i \leq 10^9 $ for all $ i $ and $ $$$a_1 \oplus a_2 \oplus \dots \oplus a_n = \frac{a_1 + a_2 + \dots + a_n}{n}, $ $ where $ \\oplus$$$ represents the [bitwise XOR](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). It can be proven that there exists a sequence of integers that satisfies all the conditions above.

Input Format

The first line of input contains $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. The first and only line of each test case contains one integer $ n $ ( $ 1 \leq n \leq 10^5 $ ) — the length of the sequence you have to find. The sum of $ n $ over all test cases does not exceed $ 10^5 $ .

Output Format

For each test case, output $ n $ space-separated integers $ a_1, a_2, \dots, a_n $ satisfying the conditions in the statement. If there are several possible answers, you can output any of them.

Explanation/Hint

In the first test case, $ 69 = \frac{69}{1} = 69 $ . In the second test case, $ 13 \oplus 2 \oplus 8 \oplus 1 = \frac{13 + 2 + 8 + 1}{4} = 6 $ .