CF1762F Good Pairs
Description
You are given an array $ a $ consisting of $ n $ integers and an integer $ k $ .
A pair $ (l,r) $ is good if there exists a sequence of indices $ i_1, i_2, \dots, i_m $ such that
- $ i_1=l $ and $ i_m=r $ ;
- $ i_j < i_{j+1} $ for all $ 1 \leq j < m $ ; and
- $ |a_{i_j}-a_{i_{j+1}}| \leq k $ for all $ 1 \leq j < m $ .
Find the number of pairs $ (l,r) $ ( $ 1 \leq l \leq r \leq n $ ) that are good.
Input Format
Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \leq t \leq 10^5 $ ) — the number of test cases. The description of the test cases follows.
The first line of each test case contains two space-separated integers $ n $ and $ k $ ( $ 1 \leq n \leq 5 \cdot 10^5 $ ; $ 0 \leq k \leq 10^5 $ ) — the length of the array $ a $ and the integer $ k $ .
The second line of each test case contains $ n $ space-separated integers $ a_1,a_2,\ldots,a_n $ ( $ 1 \leq a_i \leq 10^5 $ ) — representing the array $ a $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 5 \cdot 10^5 $ .
Output Format
For each test case, print the number of good pairs.
Explanation/Hint
In the first test case, good pairs are $ (1,1) $ , $ (1,2) $ , $ (1,3) $ , $ (2,2) $ , $ (2,3) $ , and $ (3,3) $ .
In the second test case, good pairs are $ (1,1) $ , $ (1,3) $ , $ (1,4) $ , $ (2,2) $ , $ (2,3) $ , $ (2,4) $ , $ (3,3) $ , $ (3,4) $ and $ (4,4) $ . Pair $ (1,4) $ is good because there exists a sequence of indices $ 1, 3, 4 $ which satisfy the given conditions.