CF1766A Extremely Round
Description
Let's call a positive integer extremely round if it has only one non-zero digit. For example, $ 5000 $ , $ 4 $ , $ 1 $ , $ 10 $ , $ 200 $ are extremely round integers; $ 42 $ , $ 13 $ , $ 666 $ , $ 77 $ , $ 101 $ are not.
You are given an integer $ n $ . You have to calculate the number of extremely round integers $ x $ such that $ 1 \le x \le n $ .
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
Then, $ t $ lines follow. The $ i $ -th of them contains one integer $ n $ ( $ 1 \le n \le 999999 $ ) — the description of the $ i $ -th test case.
Output Format
For each test case, print one integer — the number of extremely round integers $ x $ such that $ 1 \le x \le n $ .