CF1766D Lucky Chains

Description

Let's name a pair of positive integers $ (x, y) $ lucky if the greatest common divisor of them is equal to $ 1 $ ( $ \gcd(x, y) = 1 $ ). Let's define a chain induced by $ (x, y) $ as a sequence of pairs $ (x, y) $ , $ (x + 1, y + 1) $ , $ (x + 2, y + 2) $ , $ \dots $ , $ (x + k, y + k) $ for some integer $ k \ge 0 $ . The length of the chain is the number of pairs it consists of, or $ (k + 1) $ . Let's name such chain lucky if all pairs in the chain are lucky. You are given $ n $ pairs $ (x_i, y_i) $ . Calculate for each pair the length of the longest lucky chain induced by this pair. Note that if $ (x_i, y_i) $ is not lucky itself, the chain will have the length $ 0 $ .

Input Format

The first line contains a single integer $ n $ ( $ 1 \le n \le 10^6 $ ) — the number of pairs. Next $ n $ lines contains $ n $ pairs — one per line. The $ i $ -th line contains two integers $ x_i $ and $ y_i $ ( $ 1 \le x_i < y_i \le 10^7 $ ) — the corresponding pair.

Output Format

Print $ n $ integers, where the $ i $ -th integer is the length of the longest lucky chain induced by $ (x_i, y_i) $ or $ -1 $ if the chain can be infinitely long.

Explanation/Hint

In the first test case, $ \gcd(5, 15) = 5 > 1 $ , so it's already not lucky, so the length of the lucky chain is $ 0 $ . In the second test case, $ \gcd(13 + 1, 37 + 1) = \gcd(14, 38) = 2 $ . So, the lucky chain consists of the single pair $ (13, 37) $ .