CF1768D Lucky Permutation
题目描述
给定整数 $n$ 和一个 $1\sim n$ 的排列 $p$。
你可以对排列 $p$ 进行下列操作任意次:
- 选择整数 $i,j(1\leq i
输入格式
第一行输入一个整数 $t(1\leq t\leq10^4)$ 表示数据组数,接下来对于每组数据:
第一行输入一个整数 $n(2\leq n,\sum n\leq2\times10^5)$。
接下来输入一行 $n$ 个整数 $p_1,p_2,\cdots,p_n(1\leq p_i\leq n)$,保证 $p$ 是一个 $1\sim n$ 的排列。
输出格式
对于每组数据:
输出一行一个整数表示使 $p$ 恰有一个逆序对所需的最小操作次数。
可以证明一定存在操作方案使得 $p$ 恰有一个逆序对。
说明/提示
In the first test case, the permutation already satisfies the condition.
In the second test case, you can perform the operation with $ (i,j)=(1,2) $ , after that the permutation will be $ [2,1] $ which has exactly one inversion.
In the third test case, it is not possible to satisfy the condition with less than $ 3 $ operations. However, if we perform $ 3 $ operations with $ (i,j) $ being $ (1,3) $ , $ (2,4) $ , and $ (3,4) $ in that order, the final permutation will be $ [1, 2, 4, 3] $ which has exactly one inversion.
In the fourth test case, you can perform the operation with $ (i,j)=(2,4) $ , after that the permutation will be $ [2,1,3,4] $ which has exactly one inversion.