CF1771F Hossam and Range Minimum Query
Description
Hossam gives you a sequence of integers $ a_1, \, a_2, \, \dots, \, a_n $ of length $ n $ . Moreover, he will give you $ q $ queries of type $ (l, \, r) $ . For each query, consider the elements $ a_l, \, a_{l + 1}, \, \dots, \, a_r $ . Hossam wants to know the **smallest** number in this sequence, such that it occurs in this sequence an **odd** number of times.
You need to compute the answer for each query before process the next query.
Input Format
The first line of the input contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ), the length of the sequence.
The second line contains $ n $ integers $ a_1, \, a_2, \, \dots, \, a_n $ ( $ 1 \le a_i \le 10^9 $ ).
The third line contains one integer $ q $ ( $ 1 \le q \le 2 \cdot 10^5 $ ), the number of queries.
Each of the next $ q $ lines contains two integers $ a $ and $ b $ ( $ 0 \le a, \, b \le 2 \cdot 10^9 $ ), the numbers used to encode the queries.
Let $ \mathrm{ans}_i $ be the answer on the $ i $ -th query, and $ \mathrm{ans}_0 $ be zero. Then
$$l_i = a_i \oplus \mathrm{ans}_{i - 1}\, $$
$$r_i = b_i \oplus \mathrm{ans}_{i - 1}\, $$
where $l_i, r_i$ are parameters of the $ i $ -th query and $ \oplus $ means the [bitwise exclusive or](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) operation. It is guaranteed that $1 \le l \le r \le n$.
Output Format
For each query, print the smallest number that occurs an odd number of times on the given segment of the sequence.
If there is no such number, print $ 0 $ .
Explanation/Hint
In the example,
$$l_1 = 1, \, r_1 = 2, $$
$$ l_2 = 1, \, r_2 = 3, $$
$$ l_3 = 2, \, r_3 = 4, $$
$$ l_4 = 1, \, r_4 = 4, $$
$$ l_5 = 2, \, r_5 = 2, $$
$$ l_6 = 1, \, r_6 = 5. $$