CF1777F Comfortably Numb

Description

You are given an array $ a $ consisting of $ n $ non-negative integers. The numbness of a subarray $ a_l, a_{l+1}, \ldots, a_r $ (for arbitrary $ l \leq r $ ) is defined as $\max(a_l, a_{l+1}, \ldots, a_r) \oplus (a_l \oplus a_{l+1} \oplus \ldots \oplus a_r)$, where $\oplus$ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). Find the maximum numbness over all subarrays.

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 1000 $ ). The description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ). The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 0 \leq a_i \leq 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

Output Format

For each test case, print one integer — the maximum numbness over all subarrays of the given array.

Explanation/Hint

For the first test case, for the subarray $ [3, 4, 5] $ , its maximum value is $ 5 $ . Hence, its numbness is $ 3 \oplus 4 \oplus 5 \oplus 5 $ = $ 7 $ . This is the maximum possible numbness in this array. In the second test case the subarray $ [47, 52] $ provides the maximum numbness.