CF1788B Sum of Two Numbers

Description

The sum of digits of a non-negative integer $ a $ is the result of summing up its digits together when written in the decimal system. For example, the sum of digits of $ 123 $ is $ 6 $ and the sum of digits of $ 10 $ is $ 1 $ . In a formal way, the sum of digits of $ \displaystyle a=\sum_{i=0}^{\infty} a_i \cdot 10^i $ , where $ 0 \leq a_i \leq 9 $ , is defined as $ \displaystyle\sum_{i=0}^{\infty}{a_i} $ . Given an integer $ n $ , find two non-negative integers $ x $ and $ y $ which satisfy the following conditions. - $ x+y=n $ , and - the sum of digits of $ x $ and the sum of digits of $ y $ differ by at most $ 1 $ . It can be shown that such $ x $ and $ y $ always exist.

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10\,000 $ ). Each test case consists of a single integer $ n $ ( $ 1 \leq n \leq 10^9 $ )

Output Format

For each test case, print two integers $ x $ and $ y $ . If there are multiple answers, print any.

Explanation/Hint

In the second test case, the sum of digits of $ 67 $ and the sum of digits of $ 94 $ are both $ 13 $ . In the third test case, the sum of digits of $ 60 $ is $ 6 $ , and the sum of digits of $ 7 $ is $ 7 $ .