CF1810H Last Number

Description

You are given a multiset $ S $ . Initially, $ S = \{1,2,3, \ldots, n\} $ . You will perform the following operation $ n-1 $ times. - Choose the largest number $ S_{\text{max}} $ in $ S $ and the smallest number $ S_{\text{min}} $ in $ S $ . Remove the two numbers from $ S $ , and add $ S_{\text{max}} - S_{\text{min}} $ into $ S $ . It's easy to show that there will be exactly one number left after $ n-1 $ operations. Output that number.

Input Format

Each test contains multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^5 $ ) — the number of test cases. Their description follows. For each test case, one single line contains a single integer $ n $ ( $ 2 \le n \le 10^9 $ ) — the initial size of the multiset $ S $ .

Output Format

For each test case, output an integer denoting the only number left after $ n-1 $ operations.

Explanation/Hint

We show how the multiset $ S $ changes for $ n=4 $ . - Operation $ 1 $ : $ S=\{1,2,3,4\} $ , remove $ 4 $ , $ 1 $ , add $ 3 $ . - Operation $ 2 $ : $ S=\{2,3,3\} $ , remove $ 3 $ , $ 2 $ , add $ 1 $ . - Operation $ 3 $ : $ S=\{1,3\} $ , remove $ 3 $ , $ 1 $ , add $ 2 $ . - Final: $ S = \{2\} $ . Thus, the answer for $ n = 4 $ is $ 2 $ .