CF1815D XOR Counting

Description

Given two positive integers $ n $ and $ m $ . Find the sum of all possible values of $ a_1\bigoplus a_2\bigoplus\ldots\bigoplus a_m $ , where $ a_1,a_2,\ldots,a_m $ are non-negative integers such that $ a_1+a_2+\ldots+a_m=n $ . Note that all possible values $ a_1\bigoplus a_2\bigoplus\ldots\bigoplus a_m $ should be counted in the sum exactly once. As the answer may be too large, output your answer modulo $ 998244353 $ . Here, $ \bigoplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR).

Input Format

Each test consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The description of test cases follows. The first and only line of each test case contains two integers $ n $ and $ m $ ( $ 0\le n\le 10^{18}, 1\le m\le 10^5 $ ) — the sum and the number of integers in the set, respectively.

Output Format

For each test case, output the sum of all possible values of $ a_1\bigoplus a_2\bigoplus\ldots\bigoplus a_m $ among all non-negative integers $ a_1,a_2,\ldots,a_m $ with $ a_1+a_2+\ldots+a_m=n $ . As the answer may be too large, output your answer modulo $ 998244353 $ .

Explanation/Hint

For the first test case, we must have $ a_1=69 $ , so it's the only possible value of $ a_1 $ , therefore our answer is $ 69 $ . For the second test case, $ (a_1,a_2) $ can be $ (0,5), (1,4), (2,3), (3,2), (4,1) $ or $ (5,0) $ , in which $ a_1\bigoplus a_2 $ are $ 5,5,1,1,5,5 $ respectively. So $ a_1\bigoplus a_2 $ can be $ 1 $ or $ 5 $ , therefore our answer is $ 1+5=6 $ . For the third test case, $ a_1,a_2,\ldots,a_{10} $ must be all $ 0 $ , so $ a_1\bigoplus a_2\bigoplus\ldots\bigoplus a_{10}=0 $ . Therefore our answer is $ 0 $ .