CF1821B Sort the Subarray
Description
Monocarp had an array $ a $ consisting of $ n $ integers. He has decided to choose two integers $ l $ and $ r $ such that $ 1 \le l \le r \le n $ , and then sort the subarray $ a[l..r] $ (the subarray $ a[l..r] $ is the part of the array $ a $ containing the elements $ a_l, a_{l+1}, a_{l+2}, \dots, a_{r-1}, a_r $ ) in non-descending order. After sorting the subarray, Monocarp has obtained a new array, which we denote as $ a' $ .
For example, if $ a = [6, 7, 3, 4, 4, 6, 5] $ , and Monocarp has chosen $ l = 2, r = 5 $ , then $ a' = [6, 3, 4, 4, 7, 6, 5] $ .
You are given the arrays $ a $ and $ a' $ . Find the integers $ l $ and $ r $ that Monocarp could have chosen. If there are multiple pairs of values $ (l, r) $ , find the one which corresponds to the longest subarray.
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
Each test case consists of three lines:
- the first line contains one integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ );
- the second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le n $ );
- the third line contains $ n $ integers $ a'_1, a'_2, \dots, a'_n $ ( $ 1 \le a'_i \le n $ ).
Additional constraints on the input:
- the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ ;
- it is possible to obtain the array $ a' $ by sorting one subarray of $ a $ ;
- $ a' \ne a $ (there exists at least one position in which these two arrays are different).
Output Format
For each test case, print two integers — the values of $ l $ and $ r $ ( $ 1 \le l \le r \le n $ ). If there are multiple answers, print the values that correspond to the longest subarray. If there are still multiple answers, print any of them.