CF1822G1 Magic Triples (Easy Version)
Description
This is the easy version of the problem. The only difference is that in this version, $ a_i \le 10^6 $ .
For a given sequence of $ n $ integers $ a $ , a triple $ (i, j, k) $ is called magic if:
- $ 1 \le i, j, k \le n $ .
- $ i $ , $ j $ , $ k $ are pairwise distinct.
- there exists a positive integer $ b $ such that $ a_i \cdot b = a_j $ and $ a_j \cdot b = a_k $ .
Kolya received a sequence of integers $ a $ as a gift and now wants to count the number of magic triples for it. Help him with this task!
Note that there are no constraints on the order of integers $ i $ , $ j $ and $ k $ .
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The description of the test cases follows.
The first line of the test case contains a single integer $ n $ ( $ 3 \le n \le 2 \cdot 10^5 $ ) — the length of the sequence.
The second line of the test contains $ n $ integers $ a_1, a_2, a_3, \dots, a_n $ ( $ 1 \le a_i \le 10^6 $ ) — the elements of the sequence $ a $ .
The sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, output a single integer — the number of magic triples for the sequence $ a $ .
Explanation/Hint
In the first example, there are $ 6 $ magic triples for the sequence $ a $ — $ (2, 3, 5) $ , $ (2, 5, 3) $ , $ (3, 2, 5) $ , $ (3, 5, 2) $ , $ (5, 2, 3) $ , $ (5, 3, 2) $ .
In the second example, there is a single magic triple for the sequence $ a $ — $ (2, 1, 3) $ .