CF1823C Strongly Composite

Description

A prime number is an integer greater than $ 1 $ , which has exactly two divisors. For example, $ 7 $ is a prime, since it has two divisors $ \{1, 7\} $ . A composite number is an integer greater than $ 1 $ , which has more than two different divisors. Note that the integer $ 1 $ is neither prime nor composite. Let's look at some composite number $ v $ . It has several divisors: some divisors are prime, others are composite themselves. If the number of prime divisors of $ v $ is less or equal to the number of composite divisors, let's name $ v $ as strongly composite. For example, number $ 12 $ has $ 6 $ divisors: $ \{1, 2, 3, 4, 6, 12\} $ , two divisors $ 2 $ and $ 3 $ are prime, while three divisors $ 4 $ , $ 6 $ and $ 12 $ are composite. So, $ 12 $ is strongly composite. Other examples of strongly composite numbers are $ 4 $ , $ 8 $ , $ 9 $ , $ 16 $ and so on. On the other side, divisors of $ 15 $ are $ \{1, 3, 5, 15\} $ : $ 3 $ and $ 5 $ are prime, $ 15 $ is composite. So, $ 15 $ is not a strongly composite. Other examples are: $ 2 $ , $ 3 $ , $ 5 $ , $ 6 $ , $ 7 $ , $ 10 $ and so on. You are given $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ a_i > 1 $ ). You have to build an array $ b_1, b_2, \dots, b_k $ such that following conditions are satisfied: - Product of all elements of array $ a $ is equal to product of all elements of array $ b $ : $ a_1 \cdot a_2 \cdot \ldots \cdot a_n = b_1 \cdot b_2 \cdot \ldots \cdot b_k $ ; - All elements of array $ b $ are integers greater than $ 1 $ and strongly composite; - The size $ k $ of array $ b $ is the maximum possible. Find the size $ k $ of array $ b $ , or report, that there is no array $ b $ satisfying the conditions.

Input Format

Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 1000 $ ). The description of the test cases follows. The first line of each test case contains one integer $ n $ ( $ 1 \le n \le 1000 $ ) — the size of the array $ a $ . The second line of each test case contains $ n $ integer $ a_1, a_2, \dots a_n $ ( $ 2 \le a_i \le 10^7 $ ) — the array $ a $ itself. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 1000 $ .

Output Format

For each test case, print the size $ k $ of array $ b $ , or $ 0 $ , if there is no array $ b $ satisfying the conditions.

Explanation/Hint

In the first test case, we can get array $ b = [18] $ : $ a_1 \cdot a_2 = 18 = b_1 $ ; $ 18 $ is strongly composite number. In the second test case, we can get array $ b = [60] $ : $ a_1 \cdot a_2 \cdot a_3 = 60 = b_1 $ ; $ 60 $ is strongly composite number. In the third test case, there is no array $ b $ satisfying the conditions. In the fourth test case, we can get array $ b = [4, 105] $ : $ a_1 \cdot a_2 \cdot a_3 = 420 = b_1 \cdot b_2 $ ; $ 4 $ and $ 105 $ are strongly composite numbers.