LuoTianyi and XOR-Tree
题意翻译
给定一棵 $n$ 个节点的树,根节点为 $1$ ,每个点有一个点权 $a_i$ ,每次操作可以选择一个点任意修改点权,求最少的操作次数,使得每一条根结点到叶子结点的路径上的异或和都为 $0$ 。
题目描述
LuoTianyi gives you a tree with values in its vertices, and the root of the tree is vertex $ 1 $ .
In one operation, you can change the value in one vertex to any non-negative integer.
Now you need to find the minimum number of operations you need to perform to make each path from the root to leaf $ ^{\dagger} $ has a [bitwise XOR](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) value of zero.
$ ^{\dagger} $ A leaf in a rooted tree is a vertex that has exactly one neighbor and is not a root.
输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 2 \le n \le 10^5 $ ) — the number of vertices in the tree.
The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ), the $ i $ -th number represents the value in the $ i $ -th vertex.
Next $ n−1 $ lines describe the edges of the tree. The $ i $ -th line contains two integers $ u_i $ and $ v_i $ ( $ 1 \le u_i,v_i \le n, u_i \neq v_i $ ) — the vertices connected by an edge of the tree. It's guaranteed that the given edges form a tree.
输出格式
Print a single integer — the minimum number of operations.
输入输出样例
输入样例 #1
6
3 5 7 5 8 4
1 2
1 3
1 4
3 5
4 6
输出样例 #1
3
输入样例 #2
8
7 10 7 16 19 9 16 11
1 5
4 2
6 5
5 2
7 2
2 3
3 8
输出样例 #2
3
输入样例 #3
4
1 2 1 2
1 2
2 3
4 3
输出样例 #3
0
输入样例 #4
9
4 3 6 1 5 5 5 2 7
1 2
2 3
4 1
4 5
4 6
4 7
8 1
8 9
输出样例 #4
2
说明
The tree in the first example:
 If we change the value in the vertex $ 2 $ to $ 3 $ , the value in the vertex $ 5 $ to $ 4 $ , and the value in the vertex $ 6 $ to $ 6 $ , then the tree will be ok.
The bitwise XOR from the root to the leaf $ 2 $ will be $ 3 \oplus 3=0 $ .
The bitwise XOR from the root to the leaf $ 5 $ will be $ 4 \oplus 7 \oplus 3=0 $ .
The bitwise XOR from the root to the leaf $ 6 $ will be $ 6 \oplus 5 \oplus 3=0 $ .
The tree in the second example:
 If we change the value in the vertex $ 2 $ to $ 4 $ , the value in the vertex $ 3 $ to $ 27 $ , and the value in the vertex $ 6 $ to $ 20 $ , then the tree will be ok.
The bitwise XOR from the root to the leaf $ 6 $ will be $ 20 \oplus 19 \oplus 7=0 $ .
The bitwise XOR from the root to the leaf $ 8 $ will be $ 11 \oplus 27 \oplus 4 \oplus 19 \oplus 7=0 $ .
The bitwise XOR from the root to the leaf $ 4 $ will be $ 16 \oplus 4 \oplus 19 \oplus 7=0 $ .
The bitwise XOR from the root to the leaf $ 7 $ will be $ 16 \oplus 4 \oplus 19 \oplus 7=0 $ .
In the third example, the only leaf is the vertex $ 4 $ and the bitwise XOR on the path to it is $ 1 \oplus 2 \oplus 1 \oplus 2 = 0 $ , so we don't need to change values.
In the fourth example, we can change the value in the vertex $ 1 $ to $ 5 $ , and the value in the vertex $ 4 $ to $ 0 $ .
Here $ \oplus $ denotes the bitwise XOR operation.