CF1832C Contrast Value

Description

For an array of integers $ [a_1, a_2, \dots, a_n] $ , let's call the value $ |a_1-a_2|+|a_2-a_3|+\cdots+|a_{n-1}-a_n| $ the contrast of the array. Note that the contrast of an array of size $ 1 $ is equal to $ 0 $ . You are given an array of integers $ a $ . Your task is to build an array of $ b $ in such a way that all the following conditions are met: - $ b $ is not empty, i.e there is at least one element; - $ b $ is a subsequence of $ a $ , i.e $ b $ can be produced by deleting some elements from $ a $ (maybe zero); - the contrast of $ b $ is equal to the contrast of $ a $ . What is the minimum possible size of the array $ b $ ?

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 3 \cdot 10^5 $ ) — the size of the array $ a $ . The second line contains $ n $ integers $ a_1, a_2, \cdot, a_n $ ( $ 0 \le a_i \le 10^9 $ ) — elements of the array itself. The sum of $ n $ over all test cases doesn't exceed $ 3 \cdot 10^5 $ .

Output Format

For each test case, print a single integer — the minimum possible size of the array $ b $ .