CF1838E Count Supersequences

Description

You are given an array $ a $ of $ n $ integers, where all elements $ a_i $ lie in the range $ [1, k] $ . How many different arrays $ b $ of $ m $ integers, where all elements $ b_i $ lie in the range $ [1, k] $ , contain $ a $ as a subsequence? Two arrays are considered different if they differ in at least one position. A sequence $ x $ is a subsequence of a sequence $ y $ if $ x $ can be obtained from $ y $ by the deletion of several (possibly, zero or all) elements. Since the answer may be large, print it modulo $ 10^9 + 7 $ .

Input Format

The first line of the input contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The description of the test cases follows. The first line of each test case contains three integers $ n $ , $ m $ , $ k $ ( $ 1 \le n \le 2\cdot 10^5 $ , $ n \le m \le 10^9 $ , $ 1 \le k \le 10^9 $ ) — the size of $ a $ , the size of $ b $ , and the maximum value allowed in the arrays, respectively. The next line of each test case contains $ n $ integers $ a_1, a_2, \ldots a_n $ ( $ 1\le a_i \le k $ ) — the elements of the array $ a $ . It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2\cdot 10^5 $ .

Output Format

For each test case, output a single integer — the number of suitable arrays $ b $ , modulo $ 10^9+7 $ .

Explanation/Hint

For the first example, since $ k=1 $ , there is only one array of size $ m $ consisting of the integers $ [1, k] $ . This array ( $ [1, 1, \ldots, 1] $ ) contains the original array as a subsequence, so the answer is 1. For the second example, the $ 9 $ arrays are $ [1, 1, 2, 2] $ , $ [1, 2, 1, 2] $ , $ [1, 2, 2, 1] $ , $ [1, 2, 2, 2] $ , $ [1, 2, 2, 3] $ , $ [1, 2, 3, 2] $ , $ [1, 3, 2, 2] $ , $ [2, 1, 2, 2] $ , $ [3, 1, 2, 2] $ . For the fourth example, since $ m=n $ , the only array of size $ m $ that contains $ a $ as a subsequence is $ a $ itself.