CF1842G Tenzing and Random Operations

Description

Yet another random problem. Tenzing has an array $ a $ of length $ n $ and an integer $ v $ . Tenzing will perform the following operation $ m $ times: 1. Choose an integer $ i $ such that $ 1 \leq i \leq n $ uniformly at random. 2. For all $ j $ such that $ i \leq j \leq n $ , set $ a_j := a_j + v $ . Tenzing wants to know the expected value of $ \prod_{i=1}^n a_i $ after performing the $ m $ operations, modulo $ 10^9+7 $ . Formally, let $ M = 10^9+7 $ . It can be shown that the answer can be expressed as an irreducible fraction $ \frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \not \equiv 0 \pmod{M} $ . Output the integer equal to $ p \cdot q^{-1} \bmod M $ . In other words, output the integer $ x $ that $ 0 \le x < M $ and $ x \cdot q \equiv p \pmod{M} $ .

Input Format

The first line of input contains three integers $ n $ , $ m $ and $ v $ ( $ 1\leq n\leq 5000 $ , $ 1\leq m,v\leq 10^9 $ ). The second line of input contains $ n $ integers $ a_1,a_2,\ldots,a_n $ ( $ 1\leq a_i\leq 10^9 $ ).

Output Format

Output the expected value of $ \prod_{i=1}^n a_i $ modulo $ 10^9+7 $ .

Explanation/Hint

There are three types of $ a $ after performing all the $ m $ operations : 1\. $ a_1=2,a_2=12 $ with $ \frac{1}{4} $ probability. 2\. $ a_1=a_2=12 $ with $ \frac{1}{4} $ probability. 3\. $ a_1=7,a_2=12 $ with $ \frac{1}{2} $ probability. So the expected value of $ a_1\cdot a_2 $ is $ \frac{1}{4}\cdot (24+144) + \frac{1}{2}\cdot 84=84 $ .