CF1844H Multiple of Three Cycles

Description

An array $ a_1,\dots,a_n $ of length $ n $ is initially all blank. There are $ n $ updates where one entry of $ a $ is updated to some number, such that $ a $ becomes a permutation of $ 1,2,\dots,n $ after all the updates. After each update, find the number of ways (modulo $ 998\,244\,353 $ ) to fill in the remaining blank entries of $ a $ so that $ a $ becomes a permutation of $ 1,2,\dots,n $ and all cycle lengths in $ a $ are multiples of $ 3 $ . A permutation of $ 1,2,\dots,n $ is an array of length $ n $ consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. A cycle in a permutation $ a $ is a sequence of pairwise distinct integers $ (i_1,\dots,i_k) $ such that $ i_2 = a_{i_1},i_3 = a_{i_2},\dots,i_k = a_{i_{k-1}},i_1 = a_{i_k} $ . The length of this cycle is the number $ k $ , which is a multiple of $ 3 $ if and only if $ k \equiv 0 \pmod 3 $ .

Input Format

The first line contains a single integer $ n $ ( $ 3 \le n \le 3 \cdot 10^5 $ , $ n \equiv 0 \pmod 3 $ ). The $ i $ -th of the next $ n $ lines contains two integers $ x_i $ and $ y_i $ , representing that the $ i $ -th update changes $ a_{x_i} $ to $ y_i $ . It is guaranteed that $ x_1,\dots,x_n $ and $ y_1,\dots,y_n $ are permutations of $ 1,2,\dots,n $ , i.e. $ a $ becomes a permutation of $ 1,2,\dots,n $ after all the updates.

Output Format

Output $ n $ lines: the number of ways (modulo $ 998\,244\,353 $ ) after the first $ 1,2,\dots,n $ updates.

Explanation/Hint

In the first sample, for example, after the $ 3 $ rd update the $ 3 $ ways to complete the permutation $ a = [4,\_,2,5,\_,\_] $ are as follows: - $ [4,1,2,5,6,3] $ : The only cycle is $ (1\,4\,5\,6\,3\,2) $ , with length $ 6 $ . - $ [4,6,2,5,1,3] $ : The cycles are $ (1\,4\,5) $ and $ (2\,6\,3) $ , with lengths $ 3 $ and $ 3 $ . - $ [4,6,2,5,3,1] $ : The only cycle is $ (1\,4\,5\,3\,2\,6) $ , with length $ 6 $ . In the second sample, the first update creates a cycle of length $ 1 $ , so there are no ways to make all cycle lengths a multiple of $ 3 $ .