CF1849E Max to the Right of Min
Description
You are given a permutation $ p $ of length $ n $ — an array, consisting of integers from $ 1 $ to $ n $ , all distinct.
Let $ p_{l,r} $ denote a subarray — an array formed by writing down elements from index $ l $ to index $ r $ , inclusive.
Let $ \mathit{maxpos}_{l,r} $ denote the index of the maximum element on $ p_{l,r} $ . Similarly, let $ \mathit{minpos}_{l,r} $ denote the index of the minimum element on it.
Calculate the number of subarrays $ p_{l,r} $ such that $ \mathit{maxpos}_{l,r} > \mathit{minpos}_{l,r} $ .
Input Format
The first line contains a single integer $ n $ ( $ 1 \le n \le 10^6 $ ) — the number of elements in the permutation.
The second line contains $ n $ integers $ p_1, p_2, \dots, p_n $ ( $ 1 \le p_i \le n $ ). All $ p_i $ are distinct.
Output Format
Print a single integer — the number of subarrays $ p_{l,r} $ such that $ \mathit{maxpos}_{l,r} > \mathit{minpos}_{l,r} $ .