CF1852D Miriany and Matchstick
Description
Miriany's matchstick is a $ 2 \times n $ grid that needs to be filled with characters A or B.
He has already filled in the first row of the grid and would like you to fill in the second row. You must do so in a way such that the number of adjacent pairs of cells with different characters $ ^\dagger $ is equal to $ k $ . If it is impossible, report so.
$ ^\dagger $ An adjacent pair of cells with different characters is a pair of cells $ (r_1, c_1) $ and $ (r_2, c_2) $ ( $ 1 \le r_1, r_2 \le 2 $ , $ 1 \le c_1, c_2 \le n $ ) such that $ |r_1 - r_2| + |c_1 - c_2| = 1 $ and the characters in $ (r_1, c_1) $ and $ (r_2, c_2) $ are different.
Input Format
The first line consists of an integer $ t $ , the number of test cases ( $ 1 \leq t \leq 1000 $ ). The description of the test cases follows.
The first line of each test case has two integers, $ n $ and $ k $ ( $ 1 \leq n \leq 2 \cdot 10^5, 0 \leq k \leq 3 \cdot n $ ) – the number of columns of the matchstick, and the number of adjacent pairs of cells with different characters required.
The following line contains string $ s $ of $ n $ characters ( $ s_i $ is either A or B) – Miriany's top row of the matchstick.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, if there is no way to fill the second row with the number of adjacent pairs of cells with different characters equals $ k $ , output "NO".
Otherwise, output "YES". Then, print $ n $ characters that a valid bottom row for Miriany's matchstick consists of. If there are several answers, output any of them.
Explanation/Hint
In the first test case, it can be proved that there exists no possible way to fill in row $ 2 $ of the grid such that $ k = 1 $ .
For the second test case, BABB is one possible answer.
The grid below is the result of filling in BABB as the second row.
$ \begin{array}{|c|c|} \hline A & A & A & A \cr \hline B & A & B & B \cr \hline \end{array} $ The pairs of different characters are shown below in red:
$ \begin{array}{|c|c|} \hline \color{red}{A} & A & A & A \cr \hline \color{red}{B} & A & B & B \cr \hline \end{array} $ —————————————————
$ \begin{array}{|c|c|} \hline A & A & \color{red}{A} & A \cr \hline B & A & \color{red}{B} & B \cr \hline \end{array} $
—————————————————
$ \begin{array}{|c|c|} \hline A & A & A & \color{red}{A} \cr \hline B & A & B & \color{red}{B} \cr \hline \end{array} $
—————————————————
$ \begin{array}{|c|c|} \hline A & A & A & A \cr \hline \color{red}{B} & \color{red}{A} & B & B \cr \hline \end{array} $
—————————————————
$ \begin{array}{|c|c|} \hline A & A & A & A \cr \hline B & \color{red}{A} & \color{red}{B} & B \cr \hline \end{array} $
There are a total of $ 5 $ pairs, which satisfies $ k $ .