CF1852E Rivalries
Description
Ntarsis has an array $ a $ of length $ n $ .
The power of a subarray $ a_l \dots a_r $ ( $ 1 \leq l \leq r \leq n $ ) is defined as:
- The largest value $ x $ such that $ a_l \dots a_r $ contains $ x $ and neither $ a_1 \dots a_{l-1} $ nor $ a_{r+1} \dots a_n $ contains $ x $ .
- If no such $ x $ exists, the power is $ 0 $ .
Call an array $ b $ a rival to $ a $ if the following holds:
- The length of both $ a $ and $ b $ are equal to some $ n $ .
- Over all $ l, r $ where $ 1 \leq l \leq r \leq n $ , the power of $ a_l \dots a_r $ equals the power of $ b_l \dots b_r $ .
- The elements of $ b $ are positive.
Ntarsis wants you to find a rival $ b $ to $ a $ such that the sum of $ b_i $ over $ 1 \leq i \leq n $ is maximized. Help him with this task!
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^5 $ ). The description of the test cases follows.
The first line of each test case has a single integer $ n $ ( $ 1 \leq n \leq 10^5 $ ).
The next line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 10^9 $ ).
It is guaranteed that the sum of $ n $ across all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, output $ n $ integers $ b_1, b_2, \ldots, b_n $ — a valid rival to $ a $ such that $ b_1 + b_2 + \cdots + b_n $ is maximal.
If there exist multiple rivals with the maximum sum, output any of them.
Explanation/Hint
For the first test case, one rival with the maximal sum is $ [2, 4, 2, 3, 3] $ .
$ [2, 4, 2, 3, 3] $ can be shown to be a rival to $ [1, 4, 1, 3, 3] $ .
All possible subarrays of $ a $ and $ b $ and their corresponding powers are listed below:
- The power of $ a[1:1] = [1] = 0 $ , the power of $ b[1:1] = [2] = 0 $ .
- The power of $ a[1:2] = [1, 4] = 4 $ , the power of $ b[1:2] = [2, 4] = 4 $ .
- The power of $ a[1:3] = [1, 4, 1] = 4 $ , the power of $ b[1:3] = [2, 4, 2] = 4 $ .
- The power of $ a[1:4] = [1, 4, 1, 3] = 4 $ , the power of $ b[1:4] = [2, 4, 2, 3] = 4 $ .
- The power of $ a[1:5] = [1, 4, 1, 3, 3] = 4 $ , the power of $ b[1:5] = [2, 4, 2, 3, 3] = 4 $ .
- The power of $ a[2:2] = [4] = 4 $ , the power of $ b[2:2] = [4] = 4 $ .
- The power of $ a[2:3] = [4, 1] = 4 $ , the power of $ b[2:3] = [4, 2] = 4 $ .
- The power of $ a[2:4] = [4, 1, 3] = 4 $ , the power of $ b[2:4] = [4, 2, 3] = 4 $ .
- The power of $ a[2:5] = [4, 1, 3, 3] = 4 $ , the power of $ b[2:5] = [4, 2, 3, 3] = 4 $ .
- The power of $ a[3:3] = [1] = 0 $ , the power of $ b[3:3] = [2] = 0 $ .
- The power of $ a[3:4] = [1, 3] = 0 $ , the power of $ b[3:4] = [2, 3] = 0 $ .
- The power of $ a[3:5] = [1, 3, 3] = 3 $ , the power of $ b[3:5] = [2, 3, 3] = 3 $ .
- The power of $ a[4:4] = [3] = 0 $ , the power of $ b[4:4] = [3] = 0 $ .
- The power of $ a[4:5] = [3, 3] = 3 $ , the power of $ b[4:5] = [3, 3] = 3 $ .
- The power of $ a[5:5] = [3] = 0 $ , the power of $ b[5:5] = [3] = 0 $ .
It can be shown there exists no rival with a greater sum than $ 2 + 4 + 2 + 3 + 3 = 14 $ .