CF1856A Tales of a Sort

题目描述

Alphen 有一个长度为 $n$ 的正整数数组 $a$。 Alphen 可以进行如下操作: - 对于所有 $i$ 从 $1$ 到 $n$,将 $a_i$ 替换为 $\max(0, a_i - 1)$。 Alphen 会不断进行上述操作,直到数组 $a$ 有序,即满足 $a_1 \leq a_2 \leq \ldots \leq a_n$。Alphen 总共会进行多少次操作?在本题的约束下,可以证明 Alphen 一定会在有限次操作后使数组有序。

输入格式

每组测试包含多个测试用例。输入的第一行包含一个整数 $t$($1 \le t \le 500$),表示测试用例的数量。接下来的每组测试用例描述如下: 每个测试用例的第一行包含一个整数 $n$($2 \le n \le 50$),表示数组 $a$ 的长度。 第二行包含 $n$ 个整数 $a_1, a_2, \dots, a_n$($1 \le a_i \le 10^9$),表示数组 $a$ 的元素。

输出格式

对于每个测试用例,输出一个整数,表示 Alphen 需要进行的操作次数。

说明/提示

在第一个测试用例中,$a=[1,2,3]$。由于 $a$ 已经有序,Alphen 不需要进行任何操作。所以答案是 $0$。 在第二个测试用例中,$a=[2,1,2,1,2]$。由于 $a$ 初始时不是有序的,Alphen 会进行一次操作使 $a=[1,0,1,0,1]$。此时 $a$ 仍然不是有序的,Alphen 会再进行一次操作使 $a=[0,0,0,0,0]$。此时 $a$ 已经有序,Alphen 不再进行操作。总共进行了两次操作,所以答案是 $2$。 由 ChatGPT 4.1 翻译