Guess Game

题意翻译

Carol 要和 Alice 和 Bob 玩猜数游戏。 首先 Carol 有一个长为 $n$ 的数列 $s = \{s_{i}\}$($i \in [1,n]$),Carol 从 $1 \sim n$ 中分别等概率选取两个数 $i_{a},i_{b}$,注意 $i_a$ 与 $i_b$ 可以相等。 令 $a=s_{i_a}$,$b=s_{i_b}$。 $a$ 和 $a \operatorname{or} b$ 会被 Carol 告诉 Alice。 $b$ 和 $a \operatorname{or} b$ 会被 Carol 告诉 Bob。 但两人都不知道 $s$ 数列的任何信息。 两人要猜出 $a$ 与 $b$ 的相对大小,即 $a > b$,$a < b$ 或 $a = b$。 从Alice 开始轮流,每次轮到的人可以说“我不知道相对大小”然后轮给另一个人,或者说“我知道了”然后给出结果。 Alice 和 Bob 都是绝顶聪明并且只在有确凿把握时猜测,现在你要输出两人进行的期望轮数(每说一句话即一轮),对 $998\,244\,353$ 取模。 **本题有多组测试数据。** 数据范围,$1 \leq T \leq 10^5$,$1 \leq n,\sum n \leq 2 \times 10^{5}$,$0 \leq s_{i} < 2^{30}$。

题目描述

Carol has a sequence $ s $ of $ n $ non-negative integers. She wants to play the "Guess Game" with Alice and Bob. To play the game, Carol will randomly select two integer indices $ i_a $ and $ i_b $ within the range $ [1, n] $ , and set $ a=s_{i_a} $ , $ b=s_{i_b} $ . Please note that $ i_a $ and $ i_b $ may coincide. Carol will tell: - the value of $ a $ to Alice; - the value of $ b $ to Bob; - the value of $ a \mid b $ to both Alice and Bob, where $ | $ denotes the [bitwise OR operation](https://en.wikipedia.org/wiki/Bitwise_operation#OR). Please note that Carol will not tell any information about $ s $ to either Alice or Bob. Then the guessing starts. The two players take turns making guesses, with Alice starting first. The goal of both players is to establish which of the following is true: $ a < b $ , $ a > b $ , or $ a = b $ . In their turn, a player can do one of the following two things: - say "I don't know", and pass the turn to the other player; - say "I know", followed by the answer " $ a<b $ ", " $ a>b $ ", or " $ a=b $ "; then the game ends. Alice and Bob hear what each other says, and can use this information to deduce the answer. Both Alice and Bob are smart enough and only say "I know" when they are completely sure. You need to calculate the expected value of the number of turns taken by players in the game. Output the answer modulo $ 998\,244\,353 $ . Formally, let $ M = 998\,244\,353 $ . It can be shown that the answer can be expressed as an irreducible fraction $ \frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \not \equiv 0 \pmod{M} $ . Output the integer equal to $ p \cdot q^{-1} \bmod M $ . In other words, output such an integer $ x $ that $ 0 \le x < M $ and $ x \cdot q \equiv p \pmod{M} $ .

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^5 $ ). The description of the test cases follows. The first line of each testcase contains a single integer $ n $ ( $ 1 \le n \le 2\cdot 10^5 $ ). The second line of each testcase contains $ n $ integers $ s_1,s_2,\ldots, s_n $ ( $ 0 \le s_i < 2^{30} $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .

输出格式


For each test case, print a single integer — the answer to the problem modulo $ 998\,244\,353 $ .

输入输出样例

输入样例 #1

4
2
2 3
3
0 0 0
3
9 9 6
8
34124838 0 113193378 8 321939321 113193378 9463828 99

输出样例 #1

499122179
1
332748120
77987843

说明

In the first test case, there are only $ 4 $ possible situations: 1. $ i_a=1 $ , $ i_b=1 $ , $ a=2 $ , $ b=2 $ , the number of turns is $ 2 $ ; 2. $ i_a=1 $ , $ i_b=2 $ , $ a=2 $ , $ b=3 $ , the number of turns is $ 3 $ ; 3. $ i_a=2 $ , $ i_b=1 $ , $ a=3 $ , $ b=2 $ , the number of turns is $ 2 $ ; 4. $ i_a=2 $ , $ i_b=2 $ , $ a=3 $ , $ b=3 $ , the number of turns is $ 3 $ . The expected number of turns is $ \frac{2+3+2+3}{4}=\frac{5}{2}=499122179\pmod{998244353} $ . Consider the first case, when $ a=2 $ , $ b=2 $ . The guessing process is as follows. In the first turn, Alice thinks, "I know that $ a=2, a\mid b=2 $ . I can infer that $ b=0 $ or $ b=2 $ , but I am not sure which one". Thus, she says, "I don't know". In the second turn, Bob thinks, "I know that $ b=2, a\mid b=2 $ . I can infer that $ a=0 $ or $ a=2 $ . But if $ a=0 $ , then Alice would have already said that $ a<b $ in the first turn, but she hasn't. So $ a=2 $ ". Thus, he says, "I know, $ a=b $ ". The game ends. In the second test case, for $ a=0 $ , $ b=0 $ , Alice knows that $ a=b $ immediately. The expected number of turns equals $ 1 $ .