CF1872D Plus Minus Permutation

Description

You are given $ 3 $ integers — $ n $ , $ x $ , $ y $ . Let's call the score of a permutation $ ^\dagger $ $ p_1, \ldots, p_n $ the following value: $ $$$(p_{1 \cdot x} + p_{2 \cdot x} + \ldots + p_{\lfloor \frac{n}{x} \rfloor \cdot x}) - (p_{1 \cdot y} + p_{2 \cdot y} + \ldots + p_{\lfloor \frac{n}{y} \rfloor \cdot y}) $ $

In other words, the score of a permutation is the sum of $ p\_i $ for all indices $ i $ divisible by $ x $ , minus the sum of $ p\_i $ for all indices $ i $ divisible by $ y $ .

You need to find the maximum possible score among all permutations of length $ n $ .

For example, if $ n = 7 $ , $ x = 2 $ , $ y = 3 $ , the maximum score is achieved by the permutation $ \[2,\\color{red}{\\underline{\\color{black}{6}}},\\color{blue}{\\underline{\\color{black}{1}}},\\color{red}{\\underline{\\color{black}{7}}},5,\\color{blue}{\\underline{\\color{red}{\\underline{\\color{black}{4}}}}},3\] $ and is equal to $ (6 + 7 + 4) - (1 + 4) = 17 - 5 = 12 $ .

$ ^\\dagger $ A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in any order. For example, $ \[2,3,1,5,4\] $ is a permutation, but $ \[1,2,2\] $ is not a permutation (the number $ 2 $ appears twice in the array) and $ \[1,3,4\] $ is also not a permutation ( $ n=3 $ , but the array contains $ 4$$$).

Input Format

The first line of input contains an integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. Then follows the description of each test case. The only line of each test case description contains $ 3 $ integers $ n $ , $ x $ , $ y $ ( $ 1 \le n \le 10^9 $ , $ 1 \le x, y \le n $ ).

Output Format

For each test case, output a single integer — the maximum score among all permutations of length $ n $ .

Explanation/Hint

The first test case is explained in the problem statement above. In the second test case, one of the optimal permutations will be $ [12,11,\color{blue}{\underline{\color{black}{2}}},4,8,\color{blue}{\underline{\color{red}{\underline{\color{black}{9}}}}},10,6,\color{blue}{\underline{\color{black}{1}}},5,3,\color{blue}{\underline{\color{red}{\underline{\color{black}{7}}}}}] $ . The score of this permutation is $ (9 + 7) - (2 + 9 + 1 + 7) = -3 $ . It can be shown that a score greater than $ -3 $ can not be achieved. Note that the answer to the problem can be negative. In the third test case, the score of the permutation will be $ (p_1 + p_2 + \ldots + p_9) - p_9 $ . One of the optimal permutations for this case is $ [9, 8, 7, 6, 5, 4, 3, 2, 1] $ , and its score is $ 44 $ . It can be shown that a score greater than $ 44 $ can not be achieved. In the fourth test case, $ x = y $ , so the score of any permutation will be $ 0 $ .